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Recall that the fluctuation-dissipation theorem connects the response function of 
a passive linear system and the spectral density of the stationary stochastic 
process which describes the thermal fluctuations in the system. It is shown that 
the classical limit (h = O) of the fluctuation-dissipation theorem implies a corre- 
spondence between systems which are reversible in the sense that the energy 
used to drive them away from equilibrium is completely recoverable as work 
and processes which are deterministic in the sense of Wiener's prediction theory, 
while irreversible systems correspond to nondeterministic processes. This corre- 
spondence is expressed by a simple transformation between the operator kernel 
which determines the optimal choice of the time-dependent force and the linear 
predictor for the stochastic process. For quantum systems this correspondence 
does not hold; the fluctuations are always of the deterministic type for any finite 
temperature, but the system is not necessarily reversible. For irreversible systems 
a formula is derived for the instantaneous entropy production which is a 
generalization of the standard one for Markovian dynamics. 

KEY WORDS: Fluctuation-dissipation theorem; passive systems; thermal 
fluctuations; stochastic processes; entropy production. 

1. I N T R O D U C T I O N  

T h e  l inear  t h e o r y  of  i r revers ib le  processes ,  i nc lud ing  l inear  r e sponse  

theory ,  O n s a g e r ' s  r ec ip roca l  re la t ions ,  a n d  the  f l uc tua t i on -d i s s i pa t i on  ( F D )  

t h e o r e m ,  is a we l l -es tab l i shed  pa r t  of  physics.  In  spi te  o f  this it seems tha t  

the re  a re  ce r t a in  f u n d a m e n t a l  p r o b l e m s  in the  f o r m a l i s m  which  are  a l m o s t  

a lways  o v e r l o o k e d .  O n e  such bas ic  aspec t  conce rns  the  very  def in i t ion  of  

i r revers ib i l i ty  wh ich  is r e l evan t  for  these  m o d e l s  of  i r revers ib le  processes .  O f  
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course, this problem is related to that of finding a formula for the entropy 
production in the system. Long ago J. Meixner introduced an interesting 
concept of irreversibility in this context which seems to have been largely 
forgotten. (~'2) In this formalism the irreversibility occurs when the external 
forces drive the system away from equilibrium and it is not possible to 
recover completely the work done on the system no matter how we choose 
the time dependence of the forces. On the other hand, for some systems the 
response function is such that all the work can be recovered, giving a 
reversible character to the system even though there is a relaxation to 
equilibrium in a weaker sense. ~3) 

An a pr ior i  unrelated problem concerns the properties of the 
stationary stochastic process which describes the thermal fluctuations in 
equilibrium. Such processes can be deterministic in the sense that for any 
time t > 0 there are linear functions of the process in ( - 0 0 ,  0) which 
approximate the random variable at time t with arbitrary accuracy, thus 
predicting this future outcome from a full knowledge of the past. Others are 
nondeterministic in the sense that there is an optimal predictor which gives 
a best approximation for the outcome at time t, but such that the error has 
a nonzero variance. Obviously the latter situation is seen as intrinsically 
random (chaotic), and intuitively this is often taken as an important 
aspect, or even a definition, of irreversibility. 

Here it will be shown that for linear systems satisfying the FD theorem 
in a classical (h ~ 0 )  limit there is a simple correspondence between the 
optimal work cycles in Meixner's theory and the linear predictors for the 
stochastic processes (Section 4). They satisfy essentially the same Wiener- 
Hopf integral equation, and there is a simple transformation (4.6) between 
them. Reversible systems correspond to deterministic processes, irreversible 
systems to nondeterministic processes. 

It is also possible to derive a formula for the entropy production 
which is a simple quadratic expression in the external forces and which 
generalizes the familiar form for Markov processes (Section 5). The for- 
mula contains the optimal work cycle for the given past history of the 
system, which means that it is not explicit unless one can solve the Wiener- 
Hopf equation. In the Markov case (Section 6) there is a solution, in fact 
the maximal work is given by an infinitely slow, reversible process similar 
to a Carnot cycle. It corresponds to the familar predictor for Markov 
processes, which depends on the last observed outcome only. 

When the FD theorem has the quantum form the correspondence 
outlined above does not hold (Section 7). In fact, the quantum correlation 
functions for thermal fluctuations at a finite temperature always have a 
deterministic property, while the response functions are not necessarily of 
the reversible type. 
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2. LINEAR S Y S T E M S  

Here the formalism of linear response theory and the FD theorem are 
introduced in a condensed way to establish the notation. There are 
numerous standard works(4~); here the notation conforms closely to that of 
ref. 6. Consider a deterministic dynamical system 5 e where the observational 
state at time t is defined by n real quantities 

v(t)  = { Y,(t)}7 

It is assumed that if no forces act on 5~, a state of equilibrium will be 
achieved asymptotically when t ~ oo. This state is normalized to be Y = 0. 
The external forces 

x ( t ) =  {x~(t)}7 

drive 5 e away from equilibrium while performing work on it. The variables 
are  chosen in such a way that the work is given by the following expres- 
sion, where the summation convention is used for repeated Greek indices: 

w= f dt X(t) YU) - j" at x , (o  L(O (2.1) 

for cyclic changes in the forces starting from equilibrium, i.e., 

x ( - ~ ) = x ( ~ ) = 0  

In the following we will consider only systems where the variables Y 
depend in a linear homogeneous way on the forces. Furthermore, it is 
assumed that this action is time-homogeneous and causal, which means 
that the linear relation is of the form 

r , (0  = f '  _ ~ d s  ~ , ( t  - s )  X v ( s )  (2.2) 

where it is assumed that 

lim @(t) = 0 
t ~ o O  

The real matrix-valued integral kernel ~ ( t )  (the response function) is 
a priori defined only for t i> O, but it is convenient to continue it to a matrix 
function on N satisfying (T stands for transpose) 

* ( -  t) = * ( t )  T 
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Also the relaxation function defined by 

v( t )  = as ,1,(s) 

for t~>0 is continued in such a way that W ( - t ) = W ( t )  T. Note that at t = 0  
the derivative ~(t)  will have a step of magnitude 

�9 (0+ ) -  ~ ( 0 -  ) = - 2 ~ ( 0 )  (2.3) 

The work can be expressed in terms of the response and relaxation 
functions as follows: 

_1  f f  ds dt (P~(s - t) X.(s)  Xv(t) W =  (2.4) 

r ~  

= �89 jJ ds dt % v ( s -  t) 2~(s) 2v(t) (2.5) 

There are clearly conditions to be fulfilled in order that partial integration 
will equate the two expressions, but these details will be left out. Again 
using the notation of ref. 6, we introduce the Fourier transform 

X~[co] --- f 2 dtei~ 

Hermitian conjugation of the Fourier transform of W(t) gives 

'I'[~o]* =~ [=co ]  

Using the Fourier transforms, the work is expressed as 

W = 4 ~  f dco co2~.v[co] Xu[o,~]* X~[ea] (2.6) 

From (2.6) it is evident that the integrals can develop singularities unless 
the Fourier transforms of the forces are nice enough. Precise assumptions 
will not be spelled out here. 

The equilibrium state Y = 0 is assumed to be a macroscopic represen- 
tation of a thermodynamic equilibrium state of given inverse temperature 
fl = 1/kB T. Let the thermal fluctuations in the variables Y be represented 
by variables Z which in general must be taken to be noncommuting, self- 
adjoint operators in the quantum case. Assume for simplicity that the 
ensemble and time averages of the fluctuations vanish. Introduce the 
autocorrelation (covariance) function as the ensemble average 

R.~(t) = (Z/,(t) Zv(0)) (2.7) 
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Due to the noncommuting nature of the operators, this quantity is 
complex-valued in general, becoming real-valued in a classical limit. It is a 
positive semidefinite matrix function, which means that 

~,~R~v(t~ - tt) ~t,v ~> 0 (2.8) 
k , l , ,u ,  v 

for all {tksN, ~ , , e C ,  k=l , . . . ,N,  VN}. 
From (2.8) and Bochner's theorem it follows that it is a Fourier 

transform of a matrix-valued measure (Feller, (7) Chapter 19). Here we are 
interested in systems with an absolutely continuous spectrum where 

lira R(t) = 0 

and we write it as a Fourier transform of a matrix function 

• f .  

R(t)- | dco e-'~ 
- -  2 ~  J 

where R[o~] is a positive-semidefinite matrix for (almost) every ~o, a 
statement written as 

r [~o]  >~ 0 (2.9) 

It is also convenient to introduce the following symmetrized correlation 
function, which is always real-valued: 

I)(t) = �89 + R ( - t )  T} 

In the commutative case we see that D ( t ) =  R(t). One can express the FD 
theorem in terms of the Fourier transform of D, 

DEco] = E~(hco) ~[co] 
h~o (_~_) (2.10) 

E~(hco) = ~ coth 

The derivation is based on the microscopic quantum equations of motion 
and the properties of Gibbs canonical ensemble. (6,s) The problems of 
justifying the perturbation approach used are discussed in refs. 9 and 10. 
In the classical limit we find 

lim E~(heo ) = fl-1 
h ~ 0  

Thus, in this limit the FD theorem reads 

fiR[col = ~ [co ]  (2.11) 
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3. P R E D I C T I O N  OF S T A T I O N A R Y  PROCESSES 

Here we sum up some known facts about the linear prediction of 
stationary stochastic processes. (11'12) The basic assumption is that only the 
autocorrelation (2.7) is relevant, which is true for Gaussian processes. 
Assume that we have observed the outcome of the process {Z(t)} in 
( -  oo, 0) and that we want to make a prediction of the outcome at some 
time t > 0 through a linear combination of the outcomes of the observations 

PZ.(t) = i~ as K(t, S).v Z~(s) (3.1) 

From the fact that we are dealing only with second moments it is natural 
to choose as a measure of the error in the prediction the following 
quadratic expression: 

( ~  .PZ~(t)-Z~(t), 2) (3.2) 

A simple variational principle gives that the best prediction in this sense is 
obtained if the predictor satisfies the equations 

( (PZ,(t) - Z~(t)) Z~(s) ) = 0 (3.3) 

for all s ~ ( - ~ ,  0). In fact, for any Z ,  which is a linear combination of the 
type (3.1) it holds that 

( I Z ,  - Z~(t)l 2 ) = ( ] Z ,  - PZ~(t)I 2 ) + (tPZ~(t) - Zu(t)[ 2 ) 

This shows directly that the minimum is achieved for Z ~ =  PZ~(t). Now 
(3.3) reads 

( PZ,(t) Zv(s) ) = R,v(t-  s) 

or more explicitly, in terms of the kernel of (3.1), for all s e  ( -  ~ ,  0), 

o duK(t, u)~R~(u-s)=Ru~(t--s)  (3.4) 
- - 0 7 )  

which is a Wiener-Hopf  integral equation for K(t, s). The method of 
solving this type of equation involves a factorization technique which will 
not be described here. (12-~4) 

The predictability properties of stationary processes can be grouped 
into two exclusive and complementary classes. With the notation used 
above they can be introduced in the following way. (~2) 
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(1) The process {Z(t)} is regular (completely nondeterministic) if 

PZ(t)--* ( Z )  = 0 as t --, oo 

This means that the knowledge of the past outcome of the process will not 
allow us to improve the predictions about the distant future. For  every t 
there is a unique linear predictor. The notation linearly regular is used in 
ref. 12. 

(2) The process is singular (deterministic) if for all t > 0 

P z ( t )  = z ( t )  

This says that the future is determined by a complete knowledge of the 
past. However, it is clear that there can be no unique linear predictor in 
this case. 

An important theorem says that every process of the type we consider 
here can be decomposed in a unique way into a regular and a singular 
component, and the two components are uncorrelated. (12) If there is a 
regular component the process is called nondeterministic. In the case n--  1 
the characterization can be given in a simple way through the spectral 
density (ref. 12, w 

(1') The process {Z(t)} is nondeterministic if the spectral density 
R[0)] defining the part of the spectrum which is absolutely continuous 
relative to Lebesgue measure satisfies 

f 
oo In RE0)] 

de) > - o o  (3.5) 
-oo 1+0)  2 

Then the absolutely continuous part of the spectrum defines the regular 
component of the process, the singular part defines the singular component. 

(2') The process is singular if there is no absolutely continuous 
spectrum or if 

f 
oo In R[0)] 
-oo do) 1+o)----------- 2- - o o  

For  n > 1 the description is a bit more complex, and more about the 
subject can be found in Rozanov. (12) 

4. PASSIVE S Y S T E M S  A N D  IRREVERSIBILITY 

Meixner ~1'2) developed a formalism for linear passive systems and a 
notion of irreversibility which is the basis for this work. It was also 
employed in ref. 15 in a more general nonlinear setting. The thermodynamic 

822/72 ~3-4-9 
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equilibrium state has the property of passivity: the work performed on the 
system by the forces starting from equilibrium is never negative, i.e., W>~ 0 
in (2.1). In other words, a passive system cannot produce work in cyclic 
processes starting from the equilibrium state Y = 0. This is Kelvin's form of 
the second law of thermodynamics. With some additional assumptions the 
KMS property of the autocorrelation functions characterizing the thermal 
equilibrium states in quantum statistical mechanics can be recovered from 
the passivity. (16'17) In the linear regime the passivity condition is inevitably 
weaker in its consequences. 

If the form (2.6) of the work is used, it is clear that the passivity takes 
the form: for almost all real co 

'l'[co] >10 (4.1) 

The validity of this property follows directly from the form (2.10) of the 
FD theorem, as D[co]~>0. Consequently ~( t )  and - ~ ( t )  are positive 
semidefinite in the sense (2.8). From this and (2.3) it follows that ~(0)~>0. 
Of course, the derivation of the FD theorem from the microscopic 
dynamics uses the properties of the Gibbs canonical state which is the 
origin of the KMS condition as well. 

For non-Markovian systems this initial condition of being in equi- 
librium must include the assumption that it was not acted upon by external 
forces in the entire past history of the system. In fact, such systems can 
retain a memory of the past and the instantaneous state does not determine 
the future evolution for a given time-dependent force. For some systems 
this memory effect does not decay with time. In general, if work is per- 
formed on the system by a cyclic force in ( - 0% 0], then it will be possible 
to recover a part of this energy during (0, oo). Meixner saw the possibility 
of basing the concepts of reversibility and irreversibility on the property of 
recoverability of work, and he used the following definition. 

D e f i n i t i o n  1. A passive system is called reversible if for every 
time-dependent force {X(t), t e ( - o o ,  0]} there is a continuation {X(t), 
t e (0, oo)} such that the total work on the system over ( - 0 %  oo) is zero, 
otherwise it is called irreversible. 

K6nig and Tobergte (3) derived a necessary and sufficient condition for 
the irreversibility of the system in the case n = 1. With the present notation 
it may be written 

f 
~ ln(co2~[co]) 

dco 1 -~- co2 > --OO (4.2) 

From the FD theorem in its classical form (2.7) and Eq. (3.5) one can 
immediately recognize the similarity between the condition for irreversibility 
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in Meixner's sense and that for regularity of the associated stationary 
process in the sense of Wiener. It is evident that the factor o9 2 makes no 
difference to the convergence or not of the integral in (4.2), so the two 
conditions are actually identical. 

The reason for this relation between irreversibility and unpredictability 
becomes evident from the variational equation for the total work per- 
formed on the system. When the X(t) is given up to time 0, a variation 

X(t) ~ X(t) + cSX(t) 

cSX(t) = 0 for t ~ ( - ~ , 0 ]  

gives a variation in W which is set to zero to solve for X(t), t > 0. In order 
to underline the similarity with the variational equation (3.4), we use the 
expression (2.5). We find for all t > 0 

_ ~ & ~ . v ( t -  s)  2 ~ ( s )  = o 

Hence we want to solve for X(t), t > 0, in 

oe 0 

fo ds ~uv ( t - s )  f(v(s) (4.3) 

It will follow from the calculations of Section 5 that the solution is really 
a minimum. It is clear from the linearity of the system and the quadratic 
nature of the expression to be minimized that the solution is a linear 
function of the given data, that is, there is a relation 

0 

J(,(t) = f du L~v(t, u) Xv(u ) (4.4) 
- o o  

which should hold for any choice of X(t), t < O. From this requirement it 
follows immediately that L is the solution to the integral equation 

fo ~ dU ~u~( t -  u) L~v(u, s) = - ~rt~v(t- s ) (4.5) 

This is again a Wiener-Hopf equation. In the commutative case where 
(2.11) holds we can rewrite this equation in the same form as (3.4), 

0 

f d u L ~ ( - u ,  - t )  R ~ v ( u - s ) =  - R . v ( t - s )  
- -  ct3 
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and consequently we can identify the solutions for the two problems 

K(t, u ) =  - L ( - u ,  - t )  T (4.6) 

In fact the two problems are isomorphic, as they have the same Hilbert 
space structure. Consequently the minima in the quadratic forms (3.2) and 
W are zero and nonzero simultaneously. The same goes for the unicity of 
the solutions. Furthermore,  the regular processes will correspond to 
systems where the available work at time t goes to zero as t ~ oo when X 
is held constant in (0, t). This, by definition, represents a relaxation to 
equilibrium (Section 5). We can conclude that in linear response models 
satisfying the classical form of the FD theorem there is the correspondence: 

deterministic processes ,~  reversible systems 

nondeterministic processes ,*~ irreversible systems 

regular processes ,*~ systems relaxing to equilibrium 

5. E N T R O P Y  P R O D U C T I O N  

With the formalism adopted in Section 4 it is natural to use the 
available work at any instant as a measure of the distance to equilibrium 
of the state at that instant. In a finite system we could interpret this as 
follows. The system has a higher energy than the equilibrium state of 
the same entropy, and an optimal work process allows us to reach the 
equilibrium state of the same entropy but a lower energy, the rest being 
delivered as work to the exterior. In general the entropy of nonequilibrium 
states is not uniquely defined, so for a given set of variables and forces this 
allows us to define a nonequilibrium entropy starting from a set of work 
processes. (is) With this definition processes which are not optimal do 
increase the entropy of the system, as a part  of the work available at one 
moment  becomes unavailable. 

In the present context the system is infinite (there is a temperature 
which is constant, independent of the dissipation of the work put into the 
system). Still we can define an entropy increase when a part  A W of the 
available work goes to waste 

~ s = ~ w  

Note that the entropy has been chosen to be dimensionless. This approach 
allows us to define an instantaneous entropy production in the following 
way. Assume for simplicity that we have a situation where the variational 
equations have unique solutions (which corresponds to a regular process). 
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Furthermore, let ~(t)  in (2.4) have the delta-function singularity defined 
by (2.3) where 4(0) is positive definite (hence, nonsingular), while the 
remainder is a continuous bounded function on ~. 

Now start from the expression (2.3) for the work and write it in a 
short-hand way as a quadratic form 

W = X , W , X  

where �9 denotes the convolution and matrix multiplication and where the 
transpose on the left-hand X factor is left out for simplicity. Consider the 
variational equation (4.3) for the optimal work process in (0, ~) ,  or rather 
its analog for X. Index the time interval ( - ~ ,  0] by 0 and (0, ~ ) by t and 
write, for example, 

HoX=X0={0X(t)  for for te(-o%0]te(0, oo) 

The variational equation for X l ,  given Xo, then reads 

H1W * X 1 = - - g l W  * X 0 

If X 1 is a solution, then it holds that 

X * W * X = X o *  W* X o - X I  * W , X 1  

Furthermore, let there be a force which is not an optimal solution, 

X '  : Xo + Xtl ~ Xo-{- X 1 -{-•X 1 

Then 

X ' * W * X ' = X * W * X + A X  1 *W*AX~ 

We see that the variational equation really gives a minimum for the total 
work performed on the system. 

Now consider three time intervals: that indexed 0 is as before, 1 stands 
for (0, ~], where ,  is going to approach zero, and 2 stands for (~, ~).  Let 

X = Xo-~- X i  -~- X 2 

where X 1 + X 2 is an optimal solution for given Xo, while 

X ' = X o + X ~ + X [  
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where X~ is an optimal process in (z, ~ )  given Xo + X'l. With AX = X ' - X  
it follows that the extra work performed on the system by having a 
nonoptimal process in (0, ~] equals 

AX* W *  3 X = 3 X 1  * W *  AX1 +AX1 * W *  AX2 

q- zIX2 * W �9 ZlXl -it- zlX2 �9 W �9 z~X2 (5.1) 

The singularity at t = 0 of ~( t )  gives a nontrivial contribution from the 
diagonal in (2.4). It appears in the first term in the rhs of (5.1) and it is 
O(~). From the equation 

/ /2W * AX2 = - / / 2 W  * AX1 

which follows from the variational equations for X2 and X;, we conclude 
that AX2 is O(~). Then we find that the three remaining terms in the rhs 
of (5.1) are O(r2). Hence it follows that 

d W  
= AX(0+ ) *(0)  3X(0+ ) (5.2) 

dv 

where the notation (0 + ) signifies a limit where r ~ 0 from above and AX 
is the difference between the value of the external force and the optimal 
solution of the variational problem given the past up to t = 0, that is, X0. 

When ~ ( 0 ) =  0 or a singular matrix the optimal solution may have a 
singularity at t = 0, which will make the limit (5.2) nonzero for irreversible 
systems. This case corresponds to Wiener's prediction formula when the 
optimal predictor contains derivatives. (11) 

Using the temperature defined through the FD theorem one can now 
define the instantaneous entropy production 

a(t) =f l  AX(t+)  ~(0)  3 X ( t + )  (5.3) 

which involves the optimal solution in (t, ~ )  given the past in ( - ~ ,  t]. 
The total entropy production over all time is proportional to the total 
amount of work performed on the system 

A S  = dt a ( t )  = f l W  (5.4) 
o ~  

as one expects. In the standard texts this is the only entropy production 
which is discussed in the general non-Markovian case. Without taking into 
account the dependence of the available work on the past history of the 
system the instantaneous entropy production can be defined only for 
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Markovian systems (Ref. 4, w In next section it is shown that (5.3) gives 
the expected answer in that case. 

We note that the expression for the entropy production depends on 
the dimension n of the system. If the forces are restricted to a subspace of 
dimension m < n, then the value of (5.3) will be different from that obtained 
if the system is described by an m-component quantity from the start. This 
is due to the fact that the solutions of the variational equation (6.1) are 
taken to be n-dimensional instead of m-dimensional, and more of the work 
can potentially be recovered. Thus the entropy production depends on the 
level of description. Only the total integrated entropy increase (5.4) will be 
independent of this arbitrariness. 

6. M A R K O V I A N  S Y S T E M S  

The stationary process Z(t) is Markovian if the function (2.5) has the 
following form for t > 0 (ref. 7, w using matrix notation: 

R(t) = {R(0)} 1/2 T(t){R(0)} 1/2 (6.1) 

fexp(tL~ for t > 0  
T( t )=~exp( - tL t )~  " " for t < 0  

(6.2) 

Here the square root is defined due to the fact that R(0)/> 0, which follows 
from (2.8) (for all tk equal). In order to satisfy (2.8) it is necessary and 
sufficient that 

- L - L t ~ > 0  

a result derived using Bochner's theorem on the Fourier transform of (6.2) 
or from the general theory of contractive semigroups (L is a dissipative 
operator). (18) In the classical limit L is real. From (2.3) and (2.11) it then 
follows that 

2~(0) = -/~(R(0 + ) - 1~(0- )) = -/~{R(0)} 1/2 (L + Lr){R(0)} 1/2/> 0 (6.3) 

In this case the solution of (3.4) by factorization techniques is rather 
straightforward, but it will be left out, as the solution is well known for 
Markov processes, where the last (complete) observation of the system is 
sufficient for the prediction. We find that the kernel in (3.1) is 

K(t, u) = ~(u) R(t) R(0) 1 

which, together with (5.2), implies that (3.4) is satisfied. 
On the other hand, we know what the optimal work processes look 

like in this case. For Markovian systems the dynamics is described by the 
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instantaneous state Y(t) through the following linear equation, which is 
obtained from (2.2), (2.11), and (6.2): 

Y(t) = R(0) 1/2 L R ( 0 ) - 1 / 2  I- - l t P ( 0 )  X ( t )  --}- Y ( t ) ]  (6.4) 

The maximal work starting from the state Y is performed by a reversible 
Carnot-like process where the starting value in t = 0 + of the force is 

X = ~F(O) - ~ Y 

and which has an infinitely slow return to the equilibrium value Y = 0. The 
solution to the variational problem should then be a force constant in 
(0, ~ ) ,  

f 
O 

X(0+)  = W(0)1Y(0)  = V(0)- I  du~(-u)X(u) 
--oo 

f 
0 

= x ( 0 - ) - v ( 0 )  -1 auV(-u)X(u) 
--00 

With the classical limit of the FD theorem (2.11) we find that the derivative 
of the optimal solution reads 

f 
0 

X(t) = -cS(t) R(0) -1 du R ( - u )  X(u) 
--oo 

and consequently the kernel in (4.4) is 

L(t, u) = - 6 ( 0  R(0) -1R(--u)  

which means that (4.6) is satisfied. The form of the entropy production is 
obtained by writing the deviation of the entropy in the state Y from the 
equilibrium (maximum) value as the negative quadratic form 

S(t) = - f l Y ( t )  ~P(0) -1Y(t)  (6.5) 

This formula is valid only in the Markovian case. The entropy production 

dS(t) 
a ( t )  - 

dt 

is then shown, using (2.11), (6.3), and (6.4), to equal (5.3). 
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7. D I S C U S S I O N  

The relation between determinism and reversibility set down in 
Section 4 is not valid when/~h-r 0. The KMS condition for the correlation 
functions (ref. 17, Chapter 5.3) is equivalent to 

r[m] = et~h~ [--co]  r 

which implies that 

f~_~ dm Rim] = I ;  do {R[-m] + e-~h~ = 2~R(0) 

But R(0) is finite, so from (2.9) it is evident that R[co] ~ 0 exponentially 
when ~o ~ -oo .  This means that the spectral density decays too fast in this 
direction to be of the regular type (this argument was also used in ref. 15, 
Appendix A.5). It is possible to come to this conclusion directly from the 
KMS condition using analytic continuation argumentsJ ~9) In ref. 19 it is 
used to show that in thermal equilibrium with/? > 0 the full set of quantum 
correlation functions of all orders have a deterministic property. The rever- 
sibility properties are determined by ~ ,  which is no longer proportional 
to R. It holds that 

D[co] = �89 -t-e ~hoJ) RFco] 

which is not necessarily of fast decay in any direction, and the same goes 
for WEe)]. 

For a dissipative Markovian quantum dynamics, given by a semi- 
group of completely positive maps, the entropy production was defined in 
ref. 20. However, this quantity corresponds to the present formalism only 
for a semigroup of quasifree maps on the CCR algebra of fluctuation 
variables, where the relative entropy is a quadratic expression which is 
essentially (6.5). (21) Note that neither the KMS condition nor the quantum 
form of the FD theorem is satisfied by the correlation functions in this 
case. (15'22) On the other hand, a derivation of the dynamics of the macro- 
scopic fluctuation observables shows that it inherits the KMS property of 
the microscopic dynamics. (1~ 

It is shown in ref. 15 that the entropy as defined through the available 
work will be nondecreasing when the description (here the number n of 
variables) is reduced, a simple consequence of the variational principle. The 
same conclusion applies to the quantity 

f 
! 

AS( t )  = ds a(s)  
oO 



554 Lindblad 

for a given funct ion X(t)  (belonging to the reduced set of variables) .  As the 
to ta l  en t ropy  increase is given by (5.4), it is evident  tha t  there can be no 
m o n o t o n i c  behav io r  of o-(t) for all t imes under  a reduc t ion  in the descrip-  
tion. Any  o ther  defini t ion of the en t ropy  increase as a funct ion of the t ime 
(for the given external  forces) must  not  be larger  than  A S ( t )  if there is not  
going to be an a p p a r e n t  con t rad ic t ion  of the second law of the rmo-  
dynamics  when fo rmula ted  in terms of this nonequi l ib r ium entropy.  
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